MATH 1A - QUIZ 3

PEYAM RYAN TABRIZIAN

Name:

Instructions: You have 15 minutes to do this quiz, for a total of 10 points. Show all your work and box your answers! May your luck be continuous!
(1) (4 points) Show, using the $\epsilon-\delta$ definition of a limit, that:

$$
\lim _{x \rightarrow-4} 2 x+2=-6
$$

(2) (4 points; 1 point each) Evaluate the following limits or say the limit does not exist:

Note: $-\infty$ points for using l'Hopital's rule (if you know what that is). Also, for your convenience, you don't have to write $\lim _{x \rightarrow a}$ all the time!
(a) $\lim _{x \rightarrow 2} \frac{\sqrt{6-x}-2}{\sqrt{3-x}-1}$
(b) $\lim _{x \rightarrow 3^{-}} \frac{x^{2}-6 x+9}{x^{2}-3 x+2}$
(c) $\lim _{x \rightarrow 2} \frac{|x-3|+1}{|x-2|}$
(d) $\lim _{x \rightarrow 0} \frac{1}{x \sqrt{1+x}}-\frac{1}{x}$
(3) (2 points) Is the following function f continuous at 0 ? Why or why not? Explain!

$$
f(x)=\left\{\begin{aligned}
x^{2} \sin \left(\frac{1}{x^{2}}\right) & \text { if } x \neq 0 \\
1 & \text { if } x=0
\end{aligned}\right.
$$

